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Abstract In the current paper, we present a novel symbolic algorithm for solving
periodic tridiagonal linear systems without imposing any restrictive conditions. The
computational cost of the algorithm is less than or almost equal to those of three well-
known algorithms given by Chawla and Khazal (Int. J. Comput. Math. 79(4):473–484,
2002) and by El-Mikkawy (Appl. Math. Comput. 161:691–696, 2005), respectively.
In addition, the solution of periodic anti-tridiagonal linear systems is also discussed.
Two numerical experiments are provided in order to illustrate the performance and
effectiveness of our algorithm. All of the experiments were performed on a computer
with aid of programs written in MATLAB.

Keywords Periodic tridiagonal matrices · Periodic anti-tridiagonal matrices ·
Matrix decomposition · Linear systems · Computational cost · Computer Algebra
Systems (CASs)
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1 Introduction and main objectives

Tridiagonal matrices and periodic (or cyclic) tridiagonal matrices frequently appear in
mathematical chemistry and computational physics as well as scientific and engi-
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neering investigations. Several examples of this can be found in quantum chem-
istry, Hückel theory, boundary value problems (BVPs), fluid mechanics, spline
approximation, parallel computing, and vision, image and signal processing (VISP),
etc. [1–7].

In this paper we mainly consider symbolic algorithm for the solution of the linear
system

Ax = f, (1.1)

where A is an n-by-n periodic tridiagonal matrix of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 c1 0 · · · 0 a1

a2 b2 c2 0
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . . 0 an−1 bn−1 cn−1

cn 0 · · · 0 an bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.2)

while x = (x1, x2, . . . , xn)T is the vector of unknowns and f = ( f1, f2, . . . , fn)T is
the right-hand side vector. Throughout the paper, the superscript symbol T corresponds
to the transpose operation of vector or matrix.

In the case where a1 = cn = 0, the coefficient matrix A is strictly tridiagonal,
and algorithms for the solution of such systems are widely known [8–11]. PT lin-
ear systems with a1 �= 0, cn �= 0 arise not only in a variety of theoretical areas
(linear algebra and numerical analysis), but also in different areas of applications
[12–15].

It often happens that the coefficient matrix has some nice properties, such that a
general-purpose solution algorithm results too expensive in comparison with more
“clever” ones, which use the favorable characteristics of the matrix itself. In recent
years, some researchers have developed fast numerical (or symbolic) algorithms for
solving PT linear systems. For example, Chawla and Khazal [16], El-Mikkawy [17].
According to these results, our main objective is to devise a more efficient algorithm
for solving system (1.1) without imposing any restrictive conditions.

An outline of this paper is as follows: in the next section, we review three well-
known algorithms and construct a novel symbolic algorithm to solve a PT linear
system in linear time. In addition, we propose a method for solving periodic anti-
tridiagonal (PAT) linear systems. In Sect. 3, we give the results of some numerical
examples to show the performance of the proposed algorithm and its competitiveness
with other existing algorithms. Finally, we make some conclusions of the work in
Sect. 4.
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2 Main results

In this section, we are going to establish a symbolic algorithm for solving a PT linear
system of the form (1.1). To do this, we begin by reviewing three existing algorithms:
Classical elimination algorithm, Sherman-Morrison algorithm [16], and PERTRI algo-
rithm [17].

2.1 Numerical algorithms for solving PT linear systems

We first describe adaptation of classical elimination process for the solution of system
(1.1) below.

Here, it is easy to see that the elimination stage involves 12n − 17 operations while
the solution stage involves 5n−6 operations. Thus, classical elimination for the system
(1.1) involves a total of 17n − 23 arithmetic operations.

In their paper [16], Chawla and Khazal proposed a computational algorithm based
on the Sherman–Morrison–Woodbury formula [18]. The resulting so-called Sherman–
Morrison algorithm for PT linear systems is described below.

Suppose two n-by-n matrices X and Y are related by

X = Y − uvT ,

where u and v are vectors of length n. If Y is nonsingular and vT Y −1u �= 1, then the
inverse of the matrix X can be explicitly given by

X−1 = Y −1 + δ · Y −1uvT Y −1,
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where

δ = 1

1 − vT Y −1u
.

For the case of PT linear systems (1.1), X = A and we select u = (1, 0, . . . , 0,−1)T

and v = (cn, 0, . . . , 0,−a1)
T . Then, the algorithm is as follows.

From the above algorithm, we can see that Chawla and Khazal’s algorithm
requires 14n + 2 operations for solving the PT system (1.1), and this leads to
the result that Chawla and Khazal’s algorithm is about 18 % faster than the clas-
sical elimination algorithm when the system size n is large enough. However,
for the validity of the algorithm, the conditions are that Y is nonsingular and
vT Y −1u �= 1.

More recently, El-Mikkawy presented a recursive algorithm (PERTRI algorithm)
for PT linear systems. The algorithm is based on the LU decomposition that repre-
sents the coefficient matrix A as a product of lower and upper triangular matrices,
i.e., A = LU . Consequently, solving Ax = f can be achieved by solutions of two
triangular linear systems Ly = f and Ux = y. The corresponding algorithm is given
below.
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From the above algorithm, we can see that El-Mikkawy’s algorithm requires 19n −
27 operations for solving the PT linear system (1.1). In fact, the PERTRI algorithm
is a generalization of the well-known algorithm due to Thomas [19,20] for solving
PT linear systems. For validity of the algorithm, the conditions are that di �= 0 for all
i = 1, 2, . . . , n.

2.2 A more efficient symbolic algorithm for PT linear systems

In this subsection, we will develop a symbolic algorithm for solving PT linear systems
based on the use of a special matrix decomposition. Let us consider the lower triangular
matrix L , the nearly upper unitriangular matrix M and the upper unitriangular matrix
U defined by

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 · · · · · · · · · 0

a2 d2
. . .

. . .
. . .

...

0 a3 d3
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . an−1 dn−1 0
0 · · · · · · 0 an dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n, (2.1)
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M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 e1 0 · · · · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . . 1 en−3

. . .
. . .

...
...

. . .
. . . 1 en−2

...

0
. . .

. . .
. . . 1 0

gn 0 · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n, (2.2)

and

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0 g1

0 1
. . .

. . .
. . . g2

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1 gn−1

0 · · · · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n . (2.3)

Proposition 2.1 The periodic tridiagonal matrix A given in (1.2) can be decomposed
into three matrices as

A = L(τ ) · M(τ ) · U (τ ), (2.4)

where L(τ ), M(τ ), U (τ ) are matrices defined in (2.1)-(2.3), and the elements in these
matrices satisfy

di =
⎧⎨
⎩

b1 if i = 1
bi − ei−1ai if i = 3, 4, . . . , n − 1
bn − cng1 − angn−1 if i = n,

(2.5)

(If di = 0, then set di = τ , τ is just a symbolic name),

ei = ci

di
, i = 1, 2, . . . , n − 2, (2.6)

g′
i =

⎧⎪⎪⎨
⎪⎪⎩

a1
d1

if i = 1

− ai g′
i−1

di
if i = 2, 3, . . . , n − 2

cn−1−an−1g′
n−2

dn−1
if i = n − 1,

(2.7)

gi =
⎧⎨
⎩

cn
dn

if i = n
g′

n−1 if i = n − 1
g′

i − ei gi+1 if i = n − 2, n − 3, . . . , 1.

(2.8)

Proof By the identity of (2.4) and simple algebraic manipulations, the conclusion
holds. ��
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Remark 2.2 It should be mentioned that the L MU decomposition for the periodic
tridiagonal matrix A always exists even if A is singular. In fact, such decomposition
depends on at most one formal parameter τ which can be regarded as a symbolic name
whose actual value is 0.

In addition, it follows from (2.4) that we have

det(A) = det(L(τ )) · det(M(τ )) · det(U (τ )) =
(

n∏
i=1

di

)∣∣∣∣∣
τ=0

, (2.9)

since det(M(τ )) = det(U (τ )) = 1. In general, it is important to compute the determi-
nant of the coefficient matrix since the value tells whether the corresponding system
is ill-conditioned or not and the system has unique solution or not [21,22].

Remark 2.3 As a direct consequence of the above results, we can conclude that if the
periodic tridiagonal matrix A is symmetric, then it is positive definite if and only if
di > 0 for all i = 1, 2, . . . , n.

Based on the decomposition in Proposition 2.1, the PT linear system Ax = f can
be directly transformed into three linear systems as follows:

L(τ )z = f, M(τ )y = z, U (τ )x = y,

where z = (z1, z2, . . . , zn)T and y = (y1, y2, . . . , yn)T . Moreover, one may notice
that these systems can be efficiently solved by forward substitution and back substi-
tution. The resulting algorithm is summarized as follows:

This new symbolic algorithm will be referred to as the SPT algorithm. The com-
putational cost (i.e., the number of basic arithmetic operations) for Algorithm 2.4 are
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Table 1 Comparisons of the
computational cost for different
algorithms

Algorithms Number of basic arithmetic
operations

Classical elimination algorithm 17n − 23

Sherman-Morrison algorithm 14n + 2

PERTRI algorithm 19n − 27

Our algorithm 14n − 13

14n −13, since costs for the steps 2, 3, 4, and 5 are 7n −7, 3n −2, 2n −2, and 2n −2,
respectively.

In the following, we compare the computational cost among Classical elimination
algorithm (Algorithm 2.1), Sherman-Morrison algorithm (Algorithm 2.2), PERTRI
algorithm (Algorithm 2.3) and our algorithm (Algorithm 2.4) in Table 1.

Comparing the results in above table, we can see that the computational cost of our
algorithm is less than or almost equal to those of other existing algorithms.

2.3 A method for solving PAT linear systems

In this subsection, we consider the solution of PAT linear systems of the form Âx = f,
where Â is an n-by-n PAT matrix given by

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 · · · 0 c1 b1
0 . . . 0 c2 b2 a2
... . . . . . . . . . . . . 0

0 . . . . . . . . . . . .
...

cn−1 bn−1 an−1 0 . . . 0
bn an 0 · · · 0 cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.10)

To do this, we take into account the fact that for the n-by-n matrix Q of the form

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0 1
... . . . . . . . . . 1 0
... . . . . . . . . . . . .

...
... . . . . . . . . . . . .

...

0 1 . . . . . . . . .
...

1 0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

it is true that Q = QT = Q−1. By noticing the following relationship between the
PAT matrix Â in (2.10) and the original periodic tridiagonal matrix A in (1.2)
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Â = AQ,

we can readily obtain Â−1 = Q−1 A−1 = Q A−1. Therefore, we can conclude that the
solution of the PAT linear systems may be obtained from the solution of a PT linear
system Ax = f by interchanging xi with xn−i+1 for all i = 1, 2, . . . , n.

3 Numerical experiments

In this section, we study the performance and effectiveness of our algorithm for two dif-
ferent numerical experiments. First, symbolic computations are performed in Example
3.1 by using MATLAB with Symbolic Math Toolbox. Then, we compare the proposed
algorithm with three existing algorithms by means of execution times and accuracy
of the solutions in Example 3.2. All experiments were carried out using MATLAB
7.12.0.635 (R2011a) on a HP Compaq 6280 Pro Microtower PC with Inter (R) Core
(TM) i5-2400 processor that has 4 cores.

Example 3.1 First, we consider the following 8-by-8 PT linear system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 1
1 1 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1

−1 0 0 0 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6
x7
x8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
6

12
16
20
24
28
22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We apply the SPT algorithm to solve the above system. The results using MATLAB
with Symbolic Math Toolbox are as follows.

Step 1–Step 2. By using Proposition 2.1, we have

L(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 τ 0 0 0 0 0 0
0 1 2τ−1

τ
0 0 0 0 0

0 0 1 3τ−2
2τ−1 0 0 0 0

0 0 0 1 4τ−3
3τ−2 0 0 0

0 0 0 0 1 5τ−4
4τ−3 0 0

0 0 0 0 0 1 6τ−5
5τ−4 0

0 0 0 0 0 0 1 13τ−5
6τ−5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

123



J Math Chem (2014) 52:2222–2233 2231

M(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 1 1

τ
0 0 0 0 0

0 0 1 τ
2τ−1 0 0 0 0

0 0 0 1 2τ−1
3τ−2 0 0 0

0 0 0 0 1 3τ−2
4τ−3 0 0

0 0 0 0 0 1 4τ−3
5τ−4

0 0 0 0 0 0 1 0
− 6τ−5

13τ−5 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

U (τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 6τ+2
6τ−5

0 1 0 0 0 0 0 − 7
6τ−5

0 0 1 0 0 0 0 τ+5
6τ−5

0 0 0 1 0 0 0 − 2τ+3
6τ−5

0 0 0 0 1 0 0 3τ+1
6τ−5

0 0 0 0 0 1 0 − 4τ−1
6τ−5

0 0 0 0 0 0 1 5τ−3
6τ−5

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Moreover, it follows from (2.9) that

det(A) =
(

8∏
i=1

di

)∣∣∣∣∣
τ=0

= (13τ − 5)|τ=0 = −5.

Step 3–Step 6. By using forward substitution and back substitution, solve the
equations:

L(τ )z = f, M(τ )y = z, U (τ )x = y,

then we have

z =
(

11,− 5

τ
,

12τ + 5

2τ − 1
,

20τ − 21

3τ − 2
,

40τ − 19

4τ − 3
,

56τ − 53

5τ − 4
,

84τ − 59

6τ − 5
,

48τ − 51

13τ − 5

)T

,

y =
(

66τ + 11

6τ − 5
,− 66

6τ − 5
,

36τ + 25

6τ − 5
,− 44

6τ − 5
,

60τ − 17

6τ − 5
,− 22

6τ − 5
,

84τ − 59

6τ − 5
,

114τ − 40

13τ − 5

)T

,

and

x =
(

29τ − 5

13τ − 5
,− 10

13τ − 5
,

59τ − 15

13τ − 5
,

38τ − 20

13τ − 5
,

73τ − 25

13τ − 5
,

76τ − 30

13τ − 5
,

87τ − 35

13τ − 5
,

114τ − 40

13τ − 5

)T

.
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Table 2 Numerical results of Example 3.2

Algorithms n 100 500 1000 6000

Classical elimination algorithm ‖x − x̃‖ 9.8638e−014 3.5403e−012 7.5261e−012 2.3599e−010
Elapsed time (s) 0.0002 0.0028 0.0037 0.0093

Sherman-Morrison algorithm ‖x − x̃‖ 8.9780e−014 3.8331e−012 1.7673e−011 3.5892e−010
Elapsed time (s) 0.0002 0.0010 0.0026 0.0085

PERTRI algorithm ‖x − x̃‖ 8.4695e−014 1.8187e−012 6.0934e−012 3.6330e−010
Elapsed time (s) 0.0003 0.0012 0.0039 0.0103

Our algorithm ‖x − x̃‖ 8.4371e−014 1.1544e−012 5.6300e−012 2.2561e−010
Elapsed time (s) 0.0002 0.0008 0.0014 0.0071

Finally, setting τ = 0, we obtain the solution

x = (1, 2, 3, 4, 5, 6, 7, 8)T .

Example 3.2 In order to show the efficiency and competitiveness of the symbolic algo-
rithm described in this paper, we now consider an n-by-n PT linear system originating
from [16] and is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 1

−1 2 −1 0
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . . 0 −1 2 −1

1 0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...
...

xn−1
xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
0
...
...

0
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be readily verified that the exact solution of the system is x̃ = (1, 1, . . . , 1)T .
For n = 100, 500, 1000, 6000, we used Classical elimination algorithm, Sherman-
Morrison algorithm, PERTRI algorithm, and our algorithm to compute x. The absolute
errors ‖x−x̃‖ and elapsed time are provided in Table 2. Here, ‖·‖ denotes the Euclidean
vector norm.

We note from Table 2 that our algorithm slightly outperforms other existing algo-
rithms for every dimension.

4 Conclusions

In this paper, we considered the solution of PT linear systems. First, we reviewed
three well-known algorithms for solving the linear system (1.1). Then, in Sect. 2.2, we
derived a symbolic algorithm (Algorithm 2.4) for robust computation. The algorithm is
based on a special matrix decomposition which never suffers from breakdown. Finally,
two numerical examples were given to demonstrate the effectiveness of our algorithm
and its competitiveness with other existing algorithms.
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Since the implementation of the proposed algorithm using Computer Algebra Sys-
tems (CASs) is straightforward, we believe that it will become a useful tool for solving
PT linear systems.
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